DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

HSP45314 Ver la hoja de datos (PDF) - Intersil

Número de pieza
componentes Descripción
Fabricante
HSP45314 Datasheet PDF : 14 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
HSP45314
Control Pins
There are three control pins provided for phase and
frequency control. The PH0 and PH1 pins select phase
offsets of 0, 90, 180, and 270 degrees and can be used for
low speed, unfiltered BPSK or QPSK modulation. These
pins can also be used for providing sine/cosine when using
two HSP45314s together as quadrature local oscillators.
The ENOFR pin enables or zeros the offset frequency word
to the phase accumulator and can be used for FSK or MSK
modulation. These control pins and the UPDATE pin are
passed through special cells to minimize the probability of
meta-stability.
Reset
A RESET pin is available which resets all registers to their
defaults. In order to reset the part, the user must take the
RESET pin low, allow at least one CLK rising edge, and then
take the RESET pin high again. The latency from the RESET
pin going high until the output reflects the reset is 11 CLK
cycles. See the register description table in the back of the
datasheet for the default states of all bits in all addresses.
After RESET goes high, one rising edge of CLK is required
before the control registers can be written to again.
Comparator
A comparator is provided for square wave output generation.
The user can take the DDS analog output, filter it, and then
send it back into the comparator. A square wave will be
generated at the comparator output (COMPOUT pin) at an
amplitude level that is dependent on the digital power supply
used (DVDD). The comparator was designed to operate at
speeds comparable to the DDS output frequency range
(approximately 0-50MHz). It is not intended for low jitter
applications. The comparator has a sleep mode that is
activated by connecting both inputs (IN- and IN+) to the
analog power supply plane. This will save approximately
4mA of current (as shown in the Typical Application Circuit).
If the comparator is not used, leave the COMPOUT pin
floating.
DAC Voltage Reference
The internal voltage reference for the DAC has a nominal
value of +1.2V with a ±60ppm/oC drift coefficient over the
full temperature range of the converter. It is recommended
that a 0.1µF capacitor be placed as close as possible to the
REFIO pin, connected to the analog ground. The REFLO pin
(11) selects the reference. The internal reference can be
selected if pin 11 is tied low (ground). If an external reference
is desired, then pin 11 should be tied high (the analog supply
voltage) and the external reference driven into REFIO, pin
12. The full scale output current of the converter is a function
of the voltage reference used and the value of RSET. IOUT
should be within the 2mA to 20mA range, though operation
below 2mA is possible, with performance degradation.
If the internal reference is used, VFSADJ will equal
approximately 1.2V (pin 13). If an external reference is used,
VFSADJ will equal the external reference. The calculation for
IOUT (Full Scale) is:
IOUT(Full Scale) = (VFSADJ/RSET) X 32.
Analog Output
IOUTA and IOUTB are complementary current outputs. They
are generated by a 14-bit digital-to-analog converter (DAC)
that is capable of running at the full 125MSPS rate. The DDS
clock also clocks the DAC. The sum of the two output
currents is always equal to the full scale output current
minus one LSB. If single ended use is desired, a load
resistor can be used to convert the output current to a
voltage. It is recommended that the unused output be either
grounded or equally terminated. The voltage developed at
the output must not violate the output voltage compliance
range of -1.0V to 1.25V. RLOAD (the impedance loading
each current output) should be chosen so that the desired
output voltage is produced in conjunction with the output full
scale current. If a known line impedance is to be driven, then
the output load resistor should be chosen to match this
impedance. The output voltage equation is:
VOUT = IOUT X RLOAD.
These outputs can be used in a differential-to-single-ended
arrangement. This is typically done to achieve better
harmonic rejection. Because of a mismatch in IOUTA and
IOUTB, the transformer does not improve the harmonic
rejection. However, it can provide voltage gain without
adding distortion. The SFDR measurements in this data
sheet were performed with a 1:1 transformer on the output of
the DDS (see Figure 1). With the center tap grounded, the
output swing of pins 17 and 18 will be biased at zero volts.
The loading as shown in Figure 1 will result in a 500mVP-P
signal at the output of the transformer if the full scale output
current of the DAC is set to 20mA.
REQ IS THE IMPEDANCE
LOADING EACH OUTPUT
PIN 17
50
IOUTB
100
PIN 18
HSP45314
IOUTA
50
VOUT = (2 x IOUT x REQ)VPP
50
FIGURE 1.
50REPRESENTS THE
SPECTRUM ANALYZER
VOUT = 2 x IOUT x REQ, where REQ is ~12.5. Allowing the
center tap to float will result in identical transformer output,
however the output pins of the DAC will have positive DC
offset, which could limit the voltage swing available due to
the output voltage compliance range. The 50load on the
output of the transformer represents the load at the end of a
‘transmission line’, typically a spectrum analyzer,
oscilloscope, or the next function in the signal chain. The
4

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]