DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

DAC08ESZ-REEL(RevC) Ver la hoja de datos (PDF) - Analog Devices

Número de pieza
componentes Descripción
Fabricante
DAC08ESZ-REEL Datasheet PDF : 20 Pages
First Prev 11 12 13 14 15 16 17 18 19 20
APPLICATION INFORMATION
REFERENCE AMPLIFIER SETUP
The DAC08 is a multiplying D/A converter in which the output
current is the product of a digital number and the input
reference current. The reference current may be fixed or may
vary from nearly zero to 4.0 mA. The full-scale output current
is a linear function of the reference current and is given by
I FR
=
255
256
×
I REF
where IREF = I14
In positive reference applications, an external positive reference
voltage forces current through R14 into the VREF(+) terminal
(Pin 14) of the reference amplifier. Alternatively, a negative
reference may be applied to VREF(–) at Pin 15; reference current
flows from ground through R14 into VREF(+) as in the positive
reference case. This negative reference connection has the
advantage of a very high impedance presented at Pin 15. The
voltage at Pin 14 is equal to and tracks the voltage at Pin 15 due
to the high gain of the internal reference amplifier. R15 (nomi-
nally equal to R14) is used to cancel bias current errors; R15
may be eliminated with only a minor increase in error.
Bipolar references may be accommodated by offsetting VREF or
Pin 15. The negative common-mode range of the reference
amplifier is given by VCM – = V− plus (IREF × 1 kΩ) plus 2.5 V.
The positive common-mode range is V+ less 1.5 V.
When a dc reference is used, a reference bypass capacitor is
recommended. A 5.0 V TTL logic supply is not recommended
as a reference. If a regulated power supply is used as a reference,
R14 should be split into two resistors with the junction bypas-
sed to ground with a 0.1 µF capacitor.
For most applications, the tight relationship between IREF and IFS
eliminates the need for trimming IREF. If required, full-scale
trimming can be accomplished by adjusting the value of R14, or
by using a potentiometer for R14. An improved method of full-
scale trimming that eliminates potentiometer T.C. effects is
shown in the recommended full-scale adjustment circuit
(Figure 27).
Using lower values of reference current reduces negative power
supply current and increases reference amplifier negative
common-mode range. The recommended range for operation
with a dc reference current is 0.2 mA to 4.0 mA.
DAC08
REFERENCE AMPLIFIER COMPENSATION FOR
MULTIPLYING APPLICATIONS
AC reference applications require the reference amplifier to be
compensated using a capacitor from Pin 16 to V−. The value of
this capacitor depends on the impedance presented to Pin 14;
for R14 values of 1.0 kΩ, 2.5 kΩ, and 5.0 kΩ, minimum values
of CC are 15 pF, 37 pF, and 75 pF. Larger values of R14 require
proportionately increased values of CC for proper phase margin,
so the ratio of CC (pF) to R14 (kΩ) = 15.
For fastest response to a pulse, low values of R14 enabling small
CC values should be used. If Pin 14 is driven by a high impedance
such as a transistor current source, none of the preceding values
suffice, and the amplifier must be heavily compensated, which
decreases overall bandwidth and slew rate. For R14 = 1 kΩ and
CC = 15 pF, the reference amplifier slews at 4 mA/µs, enabling a
transition from IREF = 0 to IREF = 2 mA in 500 ns.
Operation with pulse inputs to the reference amplifier can be
accommodated by an alternate compensation scheme. This
technique provides lowest full-scale transition times. An internal
clamp allows quick recovery of the reference amplifier from a
cutoff (IREF = 0) condition. Full-scale transition (0 mA to 2 mA)
occurs in 120 ns when the equivalent impedance at Pin 14 is
200 Ω and CC = 0. This yields a reference slew rate of 16 mA/µs,
which is relatively independent of the RIN and VIN values.
LOGIC INPUTS
The DAC08 design incorporates a unique logic input circuit
that enables direct interface to all popular logic families and
provides maximum noise immunity. This feature is made
possible by the large input swing capability, 2 µA logic input
current, and completely adjustable logic threshold voltage. For
V− = −15 V, the logic inputs may swing between −10 V and
+18 V. This enables direct interface with 15 V CMOS logic, even
when the DAC08 is powered from a 5 V supply. Minimum
input logic swing and minimum logic threshold voltage are
given by
V− + (IREF × 1 kΩ) + 2.5 V
The logic threshold may be adjusted over a wide range by placing
an appropriate voltage at the logic threshold control pin (Pin 1,
VLC). Figure 16 shows the relationship between VLC and VTH
over the temperature range, with VTH nominally 1.4 above VLC.
For TTL and DTL interface, simply ground Pin 1. When
interfacing ECL, an IREF = 1 mA is recommended. For interfacing
other logic families, see Figure 32. For general set-up of the
logic control circuit, note that Pin 1 sources 100 µA typical;
external circuitry should be designed to accommodate this
current.
Rev. C | Page 13 of 20

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]