DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

28F004BE Ver la hoja de datos (PDF) - Intel

Número de pieza
componentes Descripción
Fabricante
28F004BE Datasheet PDF : 57 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
E
4-MBIT SmartVoltage BOOT BLOCK FAMILY
3.0 PRODUCT FAMILY PRINCIPLES
OF OPERATION
Flash memory combines EPROM functionality with
in-circuit electrical write and erase. The boot block
flash family utilizes a Command User Interface
(CUI) and automated algorithms to simplify write
and erase operations. The CUI allows for 100%
TTL-level control inputs, fixed power supplies
during erasure and programming, and maximum
EPROM compatibility.
When VPP < VPPLK, the device will only successfully
execute the following commands: Read Array,
Read Status Register, Clear Status Register and
intelligent identifier mode. The device provides
standard EPROM read, standby and output disable
operations. Manufacturer identification and device
identification data can be accessed through the CUI
or through the standard EPROM A9 high voltage
access (VID) for PROM programming equipment.
The same EPROM read, standby and output
disable functions are available when 5V or 12V is
applied to the VPP pin. In addition, 5V or 12V on
VPP allows write and erase of the device. All
functions associated with altering memory contents:
Program and Erase, Intelligent Identifier Read, and
Read Status are accessed via the CUI.
The internal Write State Machine (WSM) completely
automates program and erase, beginning operation
signaled by the CUI and reporting status through
the Status Register. The CUI handles the WE#
interface to the data and address latches, as well
as system status requests during WSM operation.
3.1 Bus Operations
Flash memory reads, erases and writes in-system
via the local CPU. All bus cycles to or from the flash
memory conform to standard microprocessor bus
cycles. These bus operations are summarized in
Tables 3 and 4.
3.2 Read Operations
3.2.1
READ ARRAY
When RP# transitions from VIL (reset) to VIH, the
device will be in the read array mode and will
respond to the read control inputs (CE#, address
inputs, and OE#) without any commands being
written to the CUI.
When the device is in the read array mode, five
control signals must be controlled to obtain data at
the outputs.
RP# must be logic high (VIH)
WE# must be logic high (VIH)
BYTE# must be logic high or logic low
CE# must be logic low (VIL)
OE must be logic low (VIL)
In addition, the address of the desired location must
be applied to the address pins. Refer to Figures 15
and 16 for the exact sequence and timing of these
signals.
If the device is not in read array mode, as would be
the case after a program or erase operation, the
Read Mode command (FFH) must be written to the
CUI before reads can take place.
During system design, consideration should be
taken to ensure address and control inputs meet
required input slew rates of <10 ns as defined in
Figures 12 and 13.
PRELIMINARY
15

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]