DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MCP6242 Ver la hoja de datos (PDF) - Microchip Technology

Número de pieza
componentes Descripción
Fabricante
MCP6242
Microchip
Microchip Technology Microchip
MCP6242 Datasheet PDF : 38 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
MCP6241/1R/1U/2/4
A significant amount of current can flow out of the
inputs when the common mode voltage (VCM) is below
ground (VSS); see Figure 2-19. Applications that are
high impedance may need to limit the useable voltage
range.
4.1.3 NORMAL OPERATION
The input stage of the MCP6241/1R/1U/2/4 op amps
use two differential CMOS input stages in parallel. One
operates at low common mode input voltage (VCM),
while the other operates at high VCM. WIth this topol-
ogy, the device operates with VCM up to 0.3V above
VDD and 0.3V below VSS.
4.2 Rail-to-Rail Output
The output voltage range of the MCP6241/1R/1U/2/4
op amps is VDD – 35 mV (maximum) and VSS + 35 mV
(minimum) when RL = 10 kΩ is connected to VDD/2 and
VDD = 5.5V. Refer to Figure 2-14 for more information.
4.3 Capacitive Loads
Driving large capacitive loads can cause stability
problems for voltage-feedback op amps. As the load
capacitance increases, the feedback loop’s phase
margin decreases and the closed-loop bandwidth is
reduced. This produces gain peaking in the frequency
response, with overshoot and ringing in the step
response. A unity-gain buffer (G = +1) is the most
sensitive to capacitive loads, but all gains show the
same general behavior.
When driving large capacitive loads with these op
amps (e.g., > 70 pF when G = +1), a small series
resistor at the output (RISO in Figure 4-4) improves the
feedback loop’s phase margin (stability) by making the
output load resistive at higher frequencies. The
bandwidth will be generally lower than the bandwidth
with no capacitive load.
–
RISO
MCP624X
VIN
+
CL
VOUT
FIGURE 4-4:
Output Resistor, RISO
stabilizes large capacitive loads.
Figure 4-5 gives recommended RISO values for
different capacitive loads and gains. The x-axis is the
normalized load capacitance (CL/GN), where GN is the
circuit’s noise gain. For non-inverting gains, GN and the
signal gain are equal. For inverting gains, GN is
1 + |Signal Gain| (e.g., –1 V/V gives GN = +2 V/V).
DS21882D-page 12
1.E+1004k
1.E+013k
GN = +1 V/V
1.E+10020
GN ≥ +2 V/V
1.1E0+p01
11.E00+p02
1.E1+n03
1.1E0+n04
Normalized Load Capacitance; CL/GN (F)
FIGURE 4-5:
Recommended RISO Values
for Capacitive Loads.
After selecting RISO for your circuit, double-check the
resulting frequency response peaking and step
response overshoot. Evaluation on the bench and
simulations with the MCP6241/1R/1U/2/4 SPICE
macro model are very helpful. Modify RISO’s value until
the response is reasonable.
4.4 Supply Bypass
With this op amp, the power supply pin (VDD for
single-supply) should have a local bypass capacitor
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-
frequency performance. It can use a bulk capacitor
(i.e., 1 µF or larger) within 100 mm to provide large,
slow currents. This bulk capacitor can be shared with
other nearby analog parts.
4.5 Unused Op Amps
An unused op amp in a quad package (MCP6244)
should be configured as shown in Figure 4-6. Both
circuits prevent the output from toggling and causing
crosstalk. Circuit A can use any reference voltage
between the supplies, provides a buffered DC voltage,
and minimizes the supply current draw of the unused
op amp. Circuit B minimizes the number of
components, but may draw a little more supply current
for the unused op amp.
¼ MCP6244 (A)
VDD
R1
VDD
R2
VREF
¼ MCP6244 (B)
VDD
VREF
=
VDD
â‹…
-------R----2-------
R1 + R2
FIGURE 4-6:
Unused Op Amps.
© 2008 Microchip Technology Inc.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]