DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

M36WT864 Ver la hoja de datos (PDF) - STMicroelectronics

Número de pieza
componentes Descripción
Fabricante
M36WT864 Datasheet PDF : 92 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
M36WT864TF, M36WT864BF
by issuing the Block Lock, Block Lock-Down or
Protection Register Program commands. Only the
blocks not being erased may be read or pro-
grammed correctly. When the Program/Erase Re-
sume command is issued the operation will
complete. Refer to the Dual Operations section for
detailed information about simultaneous opera-
tions allowed during Program/Erase Suspend.
During a Program/Erase Suspend, the device can
be placed in standby mode by taking Chip Enable
to VIH. Program/Erase is aborted if Reset turns to
VIL.
See Appendix C, Figure 31, Program Suspend &
Resume Flowchart and Pseudo Code, and Figure
33, Erase Suspend & Resume Flowchart and
Pseudo Code for flowcharts for using the Program/
Erase Suspend command.
Program/Erase Resume Command
The Program/Erase Resume command can be
used to restart the Program/Erase Controller after
a Program/Erase Suspend command has paused
it. One Bus Write cycle is required to issue the
command. The command can be written to any
address.
The Program/Erase Resume command does not
change the read mode of the banks. If the sus-
pended bank was in Read Status Register, Read
Electronic signature or Read CFI Query mode the
bank remains in that mode and outputs the corre-
sponding data. If the bank was in Read Array
mode subsequent read operations will output in-
valid data.
If a Program command is issued during a Block
Erase Suspend, then the erase cannot be re-
sumed until the programming operation has com-
pleted. It is possible to accumulate suspend
operations. For example: suspend an erase oper-
ation, start a programming operation, suspend the
programming operation then read the array. See
Appendix C, Figure 31, Program Suspend & Re-
sume Flowchart and Pseudo Code, and Figure 33,
Erase Suspend & Resume Flowchart and Pseudo
Code for flowcharts for using the Program/Erase
Resume command.
Protection Register Program Command
The Protection Register Program command is
used to Program the 128 bit user One-Time-Pro-
grammable (OTP) segment of the Protection Reg-
ister and the Protection Register Lock. The
segment is programmed 16 bits at a time. When
shipped all bits in the segment are set to ‘1’. The
user can only program the bits to ‘0’.
Two write cycles are required to issue the Protec-
tion Register Program command.
s The first bus cycle sets up the Protection
Register Program command.
s The second latches the Address and the Data to
be written to the Protection Register and starts
the Program/Erase Controller.
Read operations output the Status Register con-
tent after the programming has started.
The segment can be protected by programming bit
1 of the Protection Lock Register. Bit 1 of the Pro-
tection Lock Register also protects bit 2 of the Pro-
tection Lock Register. Programming bit 2 of the
Protection Lock Register will result in a permanent
protection of Parameter Block #0 (see Figure 6,
Security Block and Protection Register Memory
Map). Attempting to program a previously protect-
ed Protection Register will result in a Status Reg-
ister error. The protection of the Protection
Register and/or the Security Block is not revers-
ible.
The Protection Register Program cannot be sus-
pended. See Appendix C, Figure 35, Protection
Register Program Flowchart and Pseudo Code,
for a flowchart for using the Protection Register
Program command.
Set Configuration Register Command.
The Set Configuration Register command is used
to write a new value to the Burst Configuration
Control Register which defines the burst length,
type, X latency, Synchronous/Asynchronous Read
mode and the valid Clock edge configuration.
Two Bus Write cycles are required to issue the Set
Configuration Register command.
s The first cycle writes the setup command and
the address corresponding to the Configuration
Register content.
s The second cycle writes the Configuration
Register data and the confirm command.
Once the command is issued the memory returns
to Read mode.
The value for the Configuration Register is always
presented on A0-A15. CR0 is on A0, CR1 on A1,
etc.; the other address bits are ignored.
Block Lock Command
The Block Lock command is used to lock a block
and prevent Program or Erase operations from
changing the data in it. All blocks are locked at
power-up or reset.
Two Bus Write cycles are required to issue the
Block Lock command.
s The first bus cycle sets up the Block Lock
command.
s The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table. 13 shows the Lock Status after issuing a
Block Lock command.
19/92

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]