DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

IDT723673L15PF Ver la hoja de datos (PDF) - Integrated Device Technology

Número de pieza
componentes Descripción
Fabricante
IDT723673L15PF Datasheet PDF : 29 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
IDT723653/723663/723673 CMOS SyncFIFOTM WITH BUS-MATCHING
2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2
COMMERCIAL TEMPERATURE RANGE
SIGNAL DESCRIPTION
BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)
RESET (RS1, RS2)
After power up, a Reset operation must be performed by providing a LOW
pulse to RS1 and RS2 simultaneously. Afterwards, the FIFO memory of the
IDT723653/723663/723673 undergoes a complete reset by taking its Reset
(RS1 and RS2) input LOW for at least four Port A clock (CLKA) and four Port
B clock (CLKB) LOW-to-HIGH transitions. The Reset inputs can switch
asynchronously to the clocks. A Reset initializes the internal read and write
pointers and forces the Full/Input Ready flag (FF/IR) LOW, the Empty/Output
Ready flag (EF/OR) LOW, the Almost-Empty flag (AE) LOW, and the Almost-
Full flag (AF) HIGH. A Reset (RS1) also forces the Mailbox flag (MBF1) of the
parallel mailbox register HIGH, and at the same time the RS2 and MBF2 operate
likewise. After a Reset, the FIFO’s Full/Input Ready flag is set HIGH after two
write clock cycles to begin normal operation.
A LOW-to-HIGH transition on the FlFO Reset (RS1) input latches the value
of the Big-Endian (BE) input for determining the order by which bytes are
transferred through Port B.
A LOW-to-HIGH transition on the FlFO Reset (RS1) input also latches the
values of the Flag Select (FS0, FS1 and FS2) inputs for choosing the Almost-
Full and Almost-Empty offset programming method ( for details see Table 1, Flag
Programming, and Almost-Empty and Almost-Full flag offset programming
section). The relevant Reset timing diagram can be found in Figure 3.
PARTIAL RESET (PRS)
The FIFO memory of the IDT723653/723663/723673 undergoes a limited
reset by taking its Partial Reset (PRS) input LOW for at least four Port A clock
(CLKA) and four Port B clock (CLKB) LOW-to-HIGH transitions. The RTM pin
must be LOW during the time of Partial Reset. The Partial Reset input can switch
asynchronously to the clocks. A Partial Reset initializes the internal read and
write pointers and forces the Full/Input Ready flag (FF/IR) LOW, the Empty/
Output Ready flag (EF/OR) LOW, the Almost-Empty flag (AE) LOW, and the
Almost-Full flag (AF) HIGH. A Partial Reset also forces the Mailbox flag (MBF1,
MBF2) of the parallel mailbox register HIGH. After a Partial Reset, the FIFO’s
Full/Input Ready flag is set HIGH after two Write Clock cycles to begin normal
operation. See Figure 4, Partial Reset (IDT Standard and FWFT Modes) for
the relevant timing diagram.
Whatever flag offsets, programming method (parallel or serial), and timing
mode (FWFT or IDT Standard mode) are currently selected at the time a Partial
Reset is initiated, those settings will be remain unchanged upon completion of
the reset operation. A Partial Reset may be useful in the case where
reprogramming a FIFO following a Reset would be inconvenient.
RETRANSMIT (RT)
The FIFO memory of these devices undergoes a Retransmit by taking its
associated Retransmit (RT) input LOW for at least four Port A Clock (CLKA) and
four Port B Clock (CLKB) LOW-to-HIGH transitions. The Retransmit initializes
the read pointer of FIFO to the first memory location.
The RTM pin must be HIGH during the time of Retransmit. Note that the RT
input is muxed with the PRS input, the state of the RTM pin determining whether
this pin performs a Retransmit or a Partial Reset. See Figure 19 for Retransmit
(Standard IDT mode) and Figure 20 for Retransmit (FWFT mode) timing
diagrams.
— ENDIAN SELECTION
This is a dual purpose pin. At the time of Reset, the BE select function is active,
permitting a choice of Big- or Little-Endian byte arrangement for data read from
Port B. This selection determines the order by which bytes (or words) of data
are transferred through this port. For the following illustrations, assume that a
byte (or word) bus size has been selected for Port B. (Note that when Port B
is configured for a long word size, the Big-Endian function has no application
and the BE input is a “don’t care”1.)
A HIGH on the BE/FWFT input when the Reset (RS1) input goes from LOW
to HIGH will select a Big-Endian arrangement. In this case, the most significant
byte (word) of the long word written to Port A will be read from Port B first; the
least significant byte (word) of the long word written to Port A will be read from
Port B last.
A LOW on the BE/FWFT input when the Reset (RS1) input goes from LOW
to HIGH will select a Little-Endian arrangement. In this case, the least significant
byte (word) of the long word written to Port A will be read from Port B first; the
most significant byte (word) of the long word written to Port A will be read from
Port B last. Refer to Figure 2 for an illustration of the BE function. See Figure
3 (Reset) for an Endian select timing diagram.
— TIMING MODE SELECTION
After Reset, the FWFT select function is active, permitting a choice between
two possible timing modes: IDT Standard mode or First Word Fall Through
(FWFT) mode. Once the Reset (RS1) input is HIGH, a HIGH on the BE/FWFT
input during the next LOW-to-HIGH transition of CLKA and CLKB will select IDT
Standard mode. This mode uses the Empty Flag function (EF) to indicate
whether or not there are any words present in the FIFO memory. It uses the
Full Flag function (FF) to indicate whether or not the FIFO memory has any free
space for writing. In IDT Standard mode, every word read from the FIFO,
including the first, must be requested using a formal read operation.
Once the Reset (RS1) input is HIGH, a LOW on the BE/FWFT input during
the next LOW-to-HIGH transition of CLKA and CLKB will select FWFT mode.
This mode uses the Output Ready function (OR) to indicate whether or not there
is valid data at the data outputs (B0-B35). It also uses the Input Ready function
(IR) to indicate whether or not the FIFO memory has any free space for writing.
In the FWFT mode, the first word written to an empty FIFO goes directly to data
outputs, no read request necessary. Subsequent words must be accessed by
performing a formal read operation.
Following Reset, the level applied to the BE/FWFT input to choose the
desired timing mode must remain static throughout FIFO operation. Refer to
Figure 3 (Reset) for a First Word Fall Through select timing diagram.
PROGRAMMING THE ALMOST-EMPTY AND ALMOST-FULL FLAGS
Two registers in the IDT723653/723663/723673 are used to hold the offset
values for the Almost-Empty and Almost-Full flags. The Almost-Empty flag (AE)
Offset register is labeled X and Almost-Full flag (AF) Offset register is labeled
Y. The offset registers can be loaded with preset values during the reset of the
FIFO, programmed in parallel using the FIFO’s Port A data inputs, or
programmed in serial using the Serial Data (SD) input (see Table 1). FS2 FS0/
SD, and FS1/SEN function the same way in both IDT Standard and FWFT
modes.
NOTE:
1. Either a HIGH or LOW can be applied to a “don’t care” input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily “don’t care” (along with
unused inputs) must not be left open, rather they must be either HIGH or LOW.
10

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]