DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY14B104LA Ver la hoja de datos (PDF) - Cypress Semiconductor

Número de pieza
componentes Descripción
Fabricante
CY14B104LA
Cypress
Cypress Semiconductor Cypress
CY14B104LA Datasheet PDF : 23 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
CY14B104LA, CY14B104NA
During any STORE operation, regardless of how it is initiated,
the CY14B104LA/CY14B104NA continues to drive the HSB pin
LOW, releasing it only when the STORE is complete. When the
STORE operation is completed, the CY14B104LA/CY14B104NA
remains disabled until the HSB pin returns HIGH. Leave the HSB
unconnected if it is not used.
Hardware RECALL (Power Up)
During power up or after any low power condition
(VCC< VSWITCH), an internal RECALL request is latched. When
VCC again exceeds the sense voltage of VSWITCH, a RECALL
cycle is automatically initiated and takes tHRECALL to complete.
During this time, HSB is driven LOW by the HSB driver.
Software STORE
Transfer data from the SRAM to the nonvolatile memory with a
software address sequence. The CY14B104LA/CY14B104NA
software STORE cycle is initiated by executing sequential CE
controlled read cycles from six specific address locations in
exact order. During the STORE cycle an erase of the previous
nonvolatile data is first performed, followed by a program of the
nonvolatile elements. After a STORE cycle is initiated, further
input and output are disabled until the cycle is completed.
Because a sequence of READs from specific addresses is used
for STORE initiation, it is important that no other read or write
accesses intervene in the sequence, or the sequence is aborted
and no STORE or RECALL takes place.
To initiate the software STORE cycle, the following read
sequence must be performed.
1. Read Address 0x4E38 Valid READ
2. Read Address 0xB1C7 Valid READ
3. Read Address 0x83E0 Valid READ
4. Read Address 0x7C1F Valid READ
5. Read Address 0x703F Valid READ
6. Read Address 0x8FC0 Initiate STORE Cycle
The software sequence may be clocked with CE controlled reads
or OE controlled reads. After the sixth address in the sequence
is entered, the STORE cycle commences and the chip is
disabled. HSB is driven LOW. It is important to use read cycles
and not write cycles in the sequence, although it is not necessary
that OE be LOW for a valid sequence. After the tSTORE cycle time
is fulfilled, the SRAM is activated again for the read and write
operation.
Software RECALL
Transfer the data from the nonvolatile memory to the SRAM with
a software address sequence. A software RECALL cycle is
initiated with a sequence of read operations in a manner similar
to the software STORE initiation. To initiate the RECALL cycle,
the following sequence of CE controlled read operations must be
performed.
1. Read Address 0x4E38 Valid READ
2. Read Address 0xB1C7 Valid READ
3. Read Address 0x83E0 Valid READ
4. Read Address 0x7C1F Valid READ
5. Read Address 0x703F Valid READ
6. Read Address 0x4C63 Initiate RECALL Cycle
Internally, RECALL is a two step procedure. First, the SRAM data
is cleared; then, the nonvolatile information is transferred into the
SRAM cells. After the tRECALL cycle time, the SRAM is again
ready for read and write operations. The RECALL operation
does not alter the data in the nonvolatile elements.
Table 2. Mode Selection
CE
WE
OE, BHE, BLE[3]
A15 - A0[7]
Mode
I/O
Power
H
X
X
X
Not Selected Output High Z
Standby
L
H
L
X
Read SRAM
Output Data
Active
L
L
X
X
Write SRAM
Input Data
Active
L
H
L
0x4E38
Read SRAM
Output Data
Active[8]
0xB1C7
Read SRAM
Output Data
0x83E0
Read SRAM
Output Data
0x7C1F
Read SRAM
Output Data
0x703F
Read SRAM
Output Data
0x8B45
AutoStore
Output Data
Disable
Notes
7. While there are 19 address lines on the CY14B104LA (18 address lines on the CY14B104NA), only the 13 address lines (A14 - A2) are used to control software modes.
Rest of the address lines are don’t care.
8. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.
Document #: 001-49918 Rev. *B
Page 5 of 23
[+] Feedback

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]