DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY14B101Q2 Ver la hoja de datos (PDF) - Cypress Semiconductor

Número de pieza
componentes Descripción
Fabricante
CY14B101Q2
Cypress
Cypress Semiconductor Cypress
CY14B101Q2 Datasheet PDF : 27 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
CY14B101Q1
CY14B101Q2
CY14B101Q3
AutoStore Operation
The AutoStore operation is a unique feature of nvSRAM, which
automatically stores the SRAM data to QuantumTrap during
power-down. This STORE makes use of an external capacitor
(VCAP) and enables the device to safely STORE the data in the
nonvolatile memory when power goes down.
During normal operation, the device draws current from VCC to
charge the capacitor connected to the VCAP pin. When the
voltage on the VCC pin drops below VSWITCH during power-down,
the device inhibits all memory accesses to nvSRAM and
automatically performs a conditional STORE operation using the
charge from the VCAP capacitor. The AutoStore operation is not
initiated if no write cycle has been performed since the last
RECALL.
Note If a capacitor is not connected to VCAP pin, AutoStore must
be disabled by issuing the AutoStore Disable instruction
specified in AutoStore Disable (ASDISB) instruction on page 14.
If AutoStore is enabled without a capacitor on the VCAP pin, the
device attempts an AutoStore operation without sufficient charge
to complete the STORE. This corrupts the data stored in the
nvSRAM and Status register. To resume normal functionality, the
WRSR instruction must be issued to update the nonvolatile bits
BP0, BP1 and WPEN in the Status Register.
Figure 3 shows the proper connection of the storage capacitor
(VCAP) for AutoStore operation. See DC Electrical
Characteristics on page 15 for the size of the VCAP.
Note CY14B101Q1 does not support AutoStore operation. The
user must perform Software STORE operation by using the SPI
STORE instruction to secure the data.
Figure 3. AutoStore Mode
VCC
0.1 uF
VCC
CS
VCAP
VSS
VCAP
Software STORE Operation
Software STORE enables the user to trigger a STORE operation
through a special SPI instruction. STORE operation is initiated
by executing STORE instruction irrespective of whether a write
has been performed since the last NV operation.
A STORE cycle takes tSTORE time to complete, during which all
the memory accesses to nvSRAM are inhibited. The RDY bit of
the Status register or the HSB pin may be polled to find the
Ready or Busy status of the nvSRAM. After the tSTORE cycle time
is completed, the SRAM is activated again for read and write
operations.
Hardware STORE and HSB Pin Operation
The HSB pin in CY14B101Q3 is used to control and
acknowledge STORE operations. If no STORE or RECALL is in
progress, this pin can be used to request a Hardware STORE
cycle. When the HSB pin is driven LOW, nvSRAM conditionally
initiates a STORE operation after tDELAY duration. An actual
STORE cycle starts only if a write to the SRAM has been
performed since the last STORE or RECALL cycle. Reads and
writes to the memory are inhibited for tSTORE duration or as long
as HSB pin is LOW.
The HSB pin also acts as an open drain driver (internal 100 k
weak pull-up resistor) that is internally driven LOW to indicate a
busy condition when the STORE (initiated by any means) is in
progress.
Note After each Hardware and Software STORE operation HSB
is driven HIGH for a short time (tHHHD) with standard output high
current and then remains HIGH by an internal 100 kpull-up
resistor.
Note For successful last data byte STORE, a hardware store
should be initiated atleast one clock cycle after the last data bit
D0 is received.
Upon completion of the STORE operation, the nvSRAM memory
access is inhibited for tLZHSB time after HSB pin returns HIGH.
The HSB pin must be left unconnected if not used.
Note CY14B101Q1/CY14B101Q2 do not have HSB pin. RDY bit
of the SPI status register may be probed to determine the Ready
or Busy status of nvSRAM.
RECALL Operation
A RECALL operation transfers the data stored in the nonvolatile
QuantumTrap elements to the SRAM. A RECALL may be
initiated in two ways: Hardware RECALL, initiated on power-up;
and Software RECALL, initiated by a SPI RECALL instruction.
Internally, RECALL is a two-step procedure. First, the SRAM
data is cleared. Next, the nonvolatile information is transferred
into the SRAM cells. All memory accesses are inhibited while a
RECALL cycle is in progress. The RECALL operation does not
alter the data in the nonvolatile elements.
Hardware RECALL (Power-Up)
During power-up, when VCC crosses VSWITCH, an automatic
RECALL sequence is initiated which transfers the content of
nonvolatile memory on to the SRAM. The data would previously
have been stored on the nonvolatile memory through a STORE
sequence.
A Power-Up RECALL cycle takes tFA time to complete and the
memory access is disabled during this time. HSB pin is used to
detect the Ready status of the device.
Software RECALL
Software RECALL enables the user to initiate a RECALL
operation to restore the content of nonvolatile memory on to the
SRAM. A Software RECALL is issued by using the SPI
instruction for RECALL.
A Software RECALL takes tRECALL time to complete during
which all memory accesses to nvSRAM are inhibited. The
controller must provide sufficient delay for the RECALL operation
to complete before issuing any memory access instructions.
Document Number: 001-50091 Rev. *L
Page 6 of 27

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]