DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY14B101P(2011) Ver la hoja de datos (PDF) - Cypress Semiconductor

Número de pieza
componentes Descripción
Fabricante
CY14B101P Datasheet PDF : 35 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
PRELIMINARY
CY14B101P
Device Operation
CY14B101P is a 1-Mbit nvSRAM memory with integrated RTC
and SPI interface. All the reads and writes to nvSRAM happen
to the SRAM which gives nvSRAM the unique capability to
handle infinite writes to the memory. The data in SRAM is
secured by a STORE sequence that transfers the data in parallel
to the nonvolatile QuantumTrap cells. A small capacitor (VCAP)
is used to AutoStore the SRAM data in nonvolatile cells when
power goes down providing power-down data security. The
QuantumTrap nonvolatile elements built in the reliable SONOS
technology make nvSRAM the ideal choice for secure data
storage.
In CY14B101P, the 1-Mbit memory array is organized as 128 K
words × 8 bits. The memory is accessed through a standard SPI
interface that enables very high clock speeds up to 40 MHz with
zero delay read and write cycles. CY14B101P supports SPI
modes 0 and 3 (CPOL, CPHA = 0, 0 and 1, 1) and operates as
SPI slave. The device is enabled using the Chip Select (CS) pin
and accessed through serial input (SI), serial output (SO), and
serial clock (SCK) pins.
CY14B101P provides the feature for hardware and software
write protection through WP pin and WRDI instruction.
CY14B101P also provides mechanisms for block write
protection (one quarter, one-half, or full array) using BP0 and
BP1 pins in the Status Register. Further, the HOLD pin is used
to suspend any serial communication without resetting the serial
sequence.
CY14B101P uses the standard SPI opcodes for memory access.
In addition to the general SPI instructions for read and write,
CY14B101P provides two special instructions that enable
access to two nvSRAM specific functions: STORE and RECALL.
The major benefit of serial (SPI) nvSRAM over serial EEPROMs
is that all reads and writes to nvSRAM are performed at the
speed of SPI bus with zero cycle delay. Therefore, no wait time
is required after any of the memory accesses. The STORE and
RECALL operations need finite time to complete and all memory
accesses are inhibited during this time. While a STORE or
RECALL operation is in progress, the busy status of the device
is indicated by the Hardware STORE Busy (HSB) pin and also
reflected on the RDY bit of the Status Register.
SRAM Write
All writes to nvSRAM are carried out on the SRAM and do not
use up any endurance cycles of the nonvolatile memory. This
enables the user to perform infinite write operations. A write cycle
is performed through the WRITE instruction. The WRITE
instruction is issued through the SI pin of the nvSRAM and
consists of the WRITE opcode, 3 bytes of address, and 1 byte of
data. Write to nvSRAM is done at SPI bus speed with zero cycle
delay.
CY14B101P allows burst mode writes to be performed through
SPI. This enables write operations on consecutive addresses
without issuing a new WRITE instruction. When the last address
in memory is reached in burst mode, the address rolls over to
0x0000 and the device continues to write.
The SPI write cycle sequence is defined in the Memory Access
section of SPI Protocol Description.
SRAM Read
A read cycle in CY14B101P is performed at the SPI bus speed
and the data is read out with zero cycle delay after the READ
instruction is executed. The READ instruction is issued through
the SI pin of the nvSRAM and consists of the READ opcode and
three bytes of address. The data is read out on the SO pin.
CY14B101P enables burst mode reads to be performed through
SPI. This enables reads on consecutive addresses without
issuing a new READ instruction. When the last address in
memory is reached in burst mode read, the address rolls over to
0x0000 and the device continues to read.
The SPI read cycle sequence is defined in the Memory Access
section of SPI Protocol Description
STORE Operation
STORE operation transfers the data from the SRAM to the
nonvolatile QuantumTrap cells. The CY14B101P stores data to
the nonvolatile cells using one of the three STORE operations:
AutoStore, activated on device power-down; Software STORE,
activated by a STORE instruction; and Hardware STORE,
activated by the HSB. During the STORE cycle, an erase of the
previous nonvolatile data is first performed, followed by a
program of the nonvolatile elements. After a STORE cycle is
initiated, read/write to CY14B101P is inhibited until the cycle is
completed.
The HSB signal or the RDY bit in the Status Register can be
monitored by the system to detect if a STORE or Software
RECALL cycle is in progress. The busy status of nvSRAM is
indicated by HSB being pulled LOW or RDY bit being set to ‘1’.
To avoid unnecessary nonvolatile STOREs, Hardware STORE
operation is ignored unless at least one write operation has taken
place since the most recent STORE or RECALL cycle. However,
software initiated STORE cycles are performed regardless of
whether a write operation has taken place.
AutoStore Operation
The AutoStore operation is a unique feature of nvSRAM which
automatically stores the SRAM data to QuantumTrap during
power-down. This STORE makes use of an external capacitor
(VCAP) which enables the device to safely STORE the data in the
nonvolatile memory when power goes down.
During normal operation, the device draws current from VCC to
charge the capacitor connected to the VCAP pin. When the
voltage on the VCC pin drops below VSWITCH during power-down,
the device inhibits all memory accesses to nvSRAM and
automatically performs a STORE operation using the charge
from the VCAP capacitor.
Note The nvSRAM should not be powered down without the
specified capacitor on VCAP pin. Without proper VCAP, the
AutoStore operation will corrupt the nvSRAM and make the part
nonfunctional.
Document #: 001-61932 Rev. *B
Page 4 of 35

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]