DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

AD7951BCPZ Ver la hoja de datos (PDF) - Analog Devices

Número de pieza
componentes Descripción
Fabricante
AD7951BCPZ Datasheet PDF : 32 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
AD7951
Data Sheet
Pin No.
23
Mnemonic
D8 or
SYNC
24
D9 or
RDERROR
25
D10 or
HW/SW
26
D11 or
SCIN
27
D12 or
SCCLK
28
D13 or
SCCS
29
BUSY
30
TEN
31
RD
32
CS
33
RESET
34
PD
35
CNVST
36
BIPOLAR
Type1
DO
DO
DI/O
DI/O
DI/O
DI/O
DO
DI2
DI
DI
DI
DI2
DI
DI2
Description
In parallel mode, this output is used as Bit 8 of the parallel port data output bus.
Serial Data Frame Synchronization. In serial master mode (SER/PAR = high, EXT/INT= low), this output
is used as a digital output frame synchronization for use with the internal data clock.
When a read sequence is initiated and INVSYNC = low, SYNC is driven high and remains high while the
SDOUT output is valid.
When a read sequence is initiated and INVSYNC = high, SYNC is driven low and remains low while the
SDOUT output is valid.
In parallel mode, this output is used as Bit 9 of the parallel port data output bus.
Serial Data Read Error. In serial slave mode (SER/PAR = high, EXT/INT = high), this output is used as an
incomplete data read error flag. If a data read is started and not completed when the current
conversion is complete, the current data is lost and RDERROR is pulsed high.
In parallel mode, this output is used as Bit 10 of the parallel port data output bus.
Serial Configuration Hardware/Software Select. In serial mode, this input is used to configure
the AD7951 by hardware or software. See the Hardware Configuration section and Software
Configuration section.
When HW/SW = low, the AD7951 is configured through software using the serial configuration register.
When HW/SW = high, the AD7951 is configured through dedicated hardware input pins.
In parallel mode, this output is used as Bit 11 of the parallel port data output bus.
Serial Configuration Data Input. In serial software configuration mode (SER/PAR = high, HW/SW = low)
this input is used to serially write in, MSB first, the configuration data into the serial configuration
register. The data on this input is latched with SCCLK. See the Software Configuration section.
In parallel mode, this output is used as Bit 12 of the parallel port data output bus.
Serial Configuration Clock. In serial software configuration mode (SER/PAR = high, HW/SW = low) this
input is used to clock in the data on SCIN. The active edge where the data SCIN is updated depends on
the logic state of the INVSCLK pin. See the Software Configuration section.
In parallel mode, this output is used as Bit 13 of the parallel port data output bus.
Serial Configuration Chip Select. In serial software configuration mode (SER/PAR = high, HW/SW = low)
this input enables the serial configuration port. See the Software Configuration section.
Busy Output. Transitions high when a conversion is started, and remains high until the conversion
is complete and the data is latched into the on-chip shift register. The falling edge of BUSY can be
used as a data ready clock signal. Note that in master read after convert mode (SER/PAR = high,
EXT/INT = low, RDC = low), the busy time changes according to Table 4.
Input Range Select. Used in conjunction with BIPOLAR per the following:
Input Range BIPOLAR TEN
0 V to 5 V
Low
Low
0 V to 10 V Low
High
±5 V
High
Low
±10 V
High
High
Read Data. When CS and RD are both low, the interface parallel or serial output bus is enabled.
Chip Select. When CS and RD are both low, the interface parallel or serial output bus is enabled. CS is
also used to gate the external clock in slave serial mode (not used for serial programmable port).
Reset Input. When high, reset the AD7951. Current conversion, if any, is aborted. The falling edge of
RESET resets the data outputs to all zeros (with OB/2C = high) and clears the configuration register. See
the Digital Interface section. If not used, this pin can be tied to OGND.
Power-Down Input. When PD = high, powers down the ADC. Power consumption is reduced and
conversions are inhibited after the current one is completed. The digital interface remains active
during power-down.
Conversion Start. A falling edge on CNVST puts the internal sample-and-hold into the hold state and
initiates a conversion.
Input Range Select. See description for Pin 30.
Rev. A | Page 10 of 32

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]