DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ATEMGA128-16AN Ver la hoja de datos (PDF) - Atmel Corporation

Número de pieza
componentes Descripción
Fabricante
ATEMGA128-16AN Datasheet PDF : 25 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
ATmega128
ATmega103
Compatibility Mode
Pin Descriptions
VCC
GND
Port A (PA7..PA0)
Port B (PB7..PB0)
The ATmega128 is 100% pin compatible with ATmega103, and can replace the ATmega103 on
current Printed Circuit Boards. The application note “Replacing ATmega103 by ATmega128”
describes what the user should be aware of replacing the ATmega103 by an ATmega128.
By programming the M103C fuse, the Atmel®ATmega128 will be compatible with the
ATmega103 regards to RAM, I/O pins and interrupt vectors as described above. However, some
new features in ATmega128 are not available in this compatibility mode, these features are
listed below:
• One USART instead of two, Asynchronous mode only. Only the eight least significant bits of
the Baud Rate Register is available.
• One 16 bits Timer/Counter with two compare registers instead of two 16-bit Timer/Counters
with three compare registers.
• Two-wire serial interface is not supported.
• Port C is output only.
• Port G serves alternate functions only (not a general I/O port).
• Port F serves as digital input only in addition to analog input to the ADC.
• Boot Loader capabilities is not supported.
• It is not possible to adjust the frequency of the internal calibrated RC Oscillator.
• The External Memory Interface can not release any Address pins for general I/O, neither
configure different wait-states to different External Memory Address sections.
In addition, there are some other minor differences to make it more compatible to ATmega103:
• Only EXTRF and PORF exists in MCUCSR.
• Timed sequence not required for Watchdog Time-out change.
• External Interrupt pins 3 - 0 serve as level interrupt only.
• USART has no FIFO buffer, so data overrun comes earlier.
Unused I/O bits in ATmega103 should be written to 0 to ensure same operation in ATmega128.
Digital supply voltage.
Ground.
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the ATmega128 as listed on page
72.
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATmega128 as listed on page
73.
5
2467XS–AVR–06/11

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]