DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MICRF002YM Ver la hoja de datos (PDF) - Micrel

Número de pieza
componentes Descripción
Fabricante
MICRF002YM Datasheet PDF : 17 Pages
First Prev 11 12 13 14 15 16 17
Micrel, Inc.
Power Supply Bypass Capacitors
VDDBB and VDDRF should be connected together directly at
the IC pins. Supply bypass capacitors are strongly
recommended. They should be connected to VDDBB and
VDDRF and should have the shortest possible lead lengths.
For best performance, connect VSSRF to VSSBB at the power
supply only (that is, keep VSSBB currents from flowing
through the VSSRF return path).
Increasing Selectivity with an Optional BandPass
Filter
For applications located in high ambient noise
environments, a fixed value band-pass network may be
connected between the ANT pin and VSSRF to provide
additional receive selectivity and input overload protection.
A minimum input configuration is included in Figure 7 it
provides some filtering and necessary overload protection.
Data Squelching
During quiet periods (no signal) the data output (DO pin)
transitions randomly with noise. Most decoders can
discriminate between this random noise and actual data but
for some system it does present a problem. There are three
possible approaches to reducing this output noise:
1. Analog squelch to raise the demodulator threshold
2. Digital squelch to disable the output when data is
not present
3. Output filter to filter the (high frequency) noise
glitches on the data output pin.
The simplest solution is add analog squelch by introducing
a small offset, or squelch voltage, on the CTH pin so that
noise does not trigger the internal comparator. Usually
20mV to 30mV is sufficient, and may be achieved by
connecting a several-megohm resistor from the CTH pin to
either VSS or VDD, depending on the desired offset polarity.
Since the MICRF002 has receiver AGC noise at the
internal comparator input is always the same, set by the
AGC. The squelch offset requirement does not change as
the local noise strength changes from installation to
installation. Introducing squelch will reduce sensitivity and
also reduce range. Only introduce an amount of offset
sufficient to quiet the output. Typical squelch resistor values
range from 6.8Mto 10M.
Wake-Up Function
The WAKEB output signal can be used to reduce system
power consumption by enabling the rest of a system when
an RF signal is present. The WAKEB is an output logic
signal which goes active low when the IC detects a
constant RF carrier. The wake-up function is unavailable
when the IC is in shutdown mode.
To activate the Wake-Up function, a received constant RF
carrier must be present for 128 counts or the internal
system clock. The internal system clock is derived from the
MICRF002/RF022
reference oscillator and is 1/256 the reference oscillator
frequency. For example:
fT = 6.4MHz
fS = fT/256 = 25kHz
PS = 1/fS = 0.04ms
128 counts x 0.04ms = 5.12ms
where:
fT = reference oscillator frequency
fS = system clock frequency
PS = system clock period
The Wake-Up counter will reset immediately after a
detected RF carrier drops. The duration of the Wake-Up
signal output is then determined by the required wake up
time plus an additional RF carrier on time interval to create
a wake up pulse output.
WAKEB Output Pulse Time = TWAKE + Additional
RF Carrier On Time
For designers who wish to use the wakeup function while
squelching the output, a positive squelching offset voltage
must be used. This simply requires that the squelch resistor
be connected to a voltage more positive than the quiescent
voltage on the CTH pin so that the data output is low in
absence of a transmission.
I/O Pin Interface Circuitry
Interface circuitry for the various I/O pins of the MICRF002
are diagrammed in Figures 1 through 6. The ESD
protection diodes at all input and output pins are not shown.
CTH Pin
VDDBB
Demodulator
Signal
2.85Vdc
PHI2B
PHI1B
CTH
VSSBB PHI2 VSSBB PHI1
Figure 2. CTH Pin
Figure 2 illustrates the CTH pin interface circuit. The CTH pin
is driven from a P-channel MOSFET source-follower with
approximately 10µA of bias. Transmission gates TG1 and
TG2 isolate the 6.9pF capacitor. Internal control signals
PHI1/PHI2 are related in a manner such that the
impedance across the transmission gates looks like a
“resistance” of approximately 100k. The dc potential at
the CTH pin is approximately 1.6V
July 2008
12
M9999-070808

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]