DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ICM7243 Ver la hoja de datos (PDF) - Intersil

Número de pieza
componentes Descripción
Fabricante
ICM7243 Datasheet PDF : 17 Pages
First Prev 11 12 13 14 15 16 17
ICM7243
Detailed Description
WR, CS, CS
These pins are immediately functionally ANDed, so all
actions described as occurring on an edge of WR, with CS
and CS enabled, will occur on the equivalent (last) enabling
or (first) disabling edge of any of these inputs. The delays
from CS pins are slightly (about 5ns) greater than from WR
or CS due to the additional inverter required on the former.
MODE
The MODE pin input is latched on the falling edge of WR
(or its equivalent, see above). The location (in Data
Memory) where incoming data will be placed is determined
either from the Address pins or the Sequential Address
Counter. This is controlled by MODE input. MODE also
controls the function of A0/SEN, A1/CLR, and A2/DlSPlay
FULL lines.
Random Access Mode
When the internal mode latch is set for Random Access
(RA) (MODE latched low), the Address input on A0, A1 and
A2 will be latched by the falling edge of WR (or its
equivalent). Subsequent changes on the Address lines will
not affect device operation. This allows use of a
multiplexed 6-bit bus controlling both address and data,
with timing controlled by WR.
Sequential Access Mode
If the internal latch is set for Sequential Access (SA),
(MODE latched high), the Serial ENable input or SEN will
be latched on the falling edge of WR (or its equivalent). The
CLR input is asynchronous, and will force-clear the
Sequential Address Counter to address 000 (CHARacter
1), and set all Data Memory contents to 100000 (blank) at
any time. The DISPlay FULL output will be active in SA
mode to indicate the overflow status of the Sequential
Address Counter. If this output is low, and SEN is (latched)
high, the contents of the Counter will be used to establish
the Data Memory location for the Data input. The Counter
is then incremented on the rising edge of WR. If SEN is
low, or DISPlay FULL is high, no action will occur. This
allows easy “daisy-chaining” of display drivers for multiple
character displays in a Sequential Access mode.
Changing Modes
Care must be exercised in any application involving
changing from one mode to another. The change will occur
only on a falling edge of WR (or its equivalent). When
changing mode from Sequential Access to Random
Access, note that A2/DlSPlay FULL will be an output until
WR has fallen low, and an Address drive here could cause
a conflict. When changing from Random Access to
Sequential Access, A1/CLR should be high to avoid
inadvertent clearing of the Data Memory and Sequential
Address Counter. DISPlay FULL will become active
immediately after the rising edge of WR.
Data Entry
The input Data is latched on the rising edge of WR (or its
equivalent) and then stored in the Data Memory location
determined as described above. The six Data bits can be
multiplexed with the Address information on the same lines
in Random Access mode. Timing is controlled by the WR
input.
OSC/OFF
The device includes a relaxation oscillator with an internal
capacitor and a nominal frequency of 200kHz. By adding
external capacitance to VDD at the OSC/OFF pin, this
frequency can be reduced as far as desired. Alternatively,
an external signal can be injected on this pin. The oscillator
(or external) frequency is pre-divided by 64, and then
further divided by 8 in the Multiplex Counter, to drive the
CHARacter drive lines (see Figure 3). An inter-character
blanking signal is derived from the pre-divider. An
additional comparator on the OSC/OFF input detects a
level lower than the relaxation oscillator's range, and
blanks the display, disables the DISPlay FULL output (if
active), and clears the pre-divider and Multiplex Counter.
This puts the circuit in a low-power-dissipation mode in
which all outputs are effectively open circuits, except for
parasitic diodes to the supply lines. Thus a display
connected to the output may be driven by another circuit
(including another ICM7243) without driver conflicts.
Display Output
The output of the Multiplex Counter is decoded and
multiplexed into the address input of the Data Memory,
except during WR operations (in Sequential Access mode,
with SEN high and DISPlay FULL low), when it scans
through the display data. The address decoder also drives
the CHARacter outputs, except during the inter-character
blanking interval (nominally about 5s). Each CHARacter
output lasts nominally about 300s, and is repeated
nominally every 2.5ms, i.e., at a 400Hz rate (times are
based on internal oscillator without external capacitor).
The 6 bits read from the Data Memory are decoded in the
ROM to the 17 (15 for ICM7243B) segment signals, which
drive the SEGment outputs. Both CHARacter and
SEGment outputs are disabled during WR operations (with
SEN high and DISPlay FULL Low for Sequential Access
mode). The outputs may also be disabled by pulling
OSC/OFF low.
The decode pattern from 6 bits to 17 (15) segments is done
by a ROM pattern according to the ASCll font shown.
Custom decode patterns can be arranged, within these
limitations, by consultation with the factory.
14
FN3162.5
October 2, 2015

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]