DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

AM29LV081B Ver la hoja de datos (PDF) - Advanced Micro Devices

Número de pieza
componentes Descripción
Fabricante
AM29LV081B Datasheet PDF : 40 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
DATA SHEET
Sector Protection/Unprotection
The hardware sector protection feature disables both
program and erase operations in any sector. The hard-
ware sector unprotection feature re-enables both pro-
gram and erase operations in previously protected
sectors. Sector protection/unprotection can be imple-
mented via two methods.
The primary method requires VID on the RESET# pin
only, and can be implemented either in-system or via
programming equipment. Figure 2 shows the algo-
rithms and Figure 21 shows the timing diagram. This
method uses standard microprocessor bus cycle tim-
ing. For sector unprotect, all unprotected sectors must
first be protected prior to the first sector unprotect write
cycle.
The alternate method intended only for programming
equipment requires VID on address pin A9, OE#, and
RESET#. This method is compatible with programmer
routines written for earlier 3.0 volt-only AMD flash de-
vices. Publication number 21225 contains further de-
tails; contact an AMD representative to request a copy.
The device is shipped with all sectors unprotected.
AMD offers the option of programming and protecting
sectors at its factory prior to shipping the device
through AMD’s ExpressFlash™ Service. Contact an
AMD representative for details.
It is possible to determine whether a sector is protected
or unprotected. See “Autoselect Mode” for details.
Temporary Sector Unprotect
This feature allows temporary unprotection of previ-
ously protected sectors to change data in-system. The
Sector Unprotect mode is activated by setting the RE-
SET# pin to VID. During this mode, formerly protected
sectors can be programmed or erased by selecting the
sector addresses. Once VID is removed from the RE-
SET# pin, all the previously protected sectors are
protected again. Figure 1 shows the algorithm, and
Figure 20 shows the timing diagrams, for this feature.
Hardware Data Protection
The command sequence requirement of unlock cycles
for programming or erasing provides data protection
against inadvertent writes (refer to Table 4 for com-
mand definitions). In addition, the following hardware
data protection measures prevent accidental erasure
or programming, which might otherwise be caused by
spurious system level signals during VCC power-up and
power-down transitions, or from system noise.
Low VCC Write Inhibit
When VCC is less than VLKO, the device does not ac-
cept any write cycles. This protects data during VCC
power-up and power-down. The command register and
all internal program/erase circuits are disabled, and the
device resets. Subsequent writes are ignored until VCC
is greater than VLKO. The system must provide the
proper signals to the control pins to prevent uninten-
tional writes when VCC is greater than VLKO.
Write Pulse “Glitch” Protection
Noise pulses of less than 5 ns (typical) on OE#, CE# or
WE# do not initiate a write cycle.
Logical Inhibit
Write cycles are inhibited by holding any one of OE# =
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,
CE# and WE# must be a logical zero while OE# is a
logical one.
Power-Up Write Inhibit
If WE# = CE# = VIL and OE# = VIH during power up, the
device does not accept commands on the rising edge
of WE#. The internal state machine is automatically
reset to reading array data on power-up.
START
RESET# = VID
(Note 1)
Perform Erase or
Program Operations
RESET# = VIH
Temporary Sector
Unprotect Completed
(Note 2)
Notes:
1. All protected sectors unprotected.
2. All previously protected sectors are protected once
again.
Figure 1. Temporary Sector Unprotect Operation
10
Am29LV081B
21525D6 October 12, 2006

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]