DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

A40MX02 Ver la hoja de datos (PDF) - Unspecified

Número de pieza
componentes Descripción
Fabricante
A40MX02
ETC1
Unspecified ETC1
A40MX02 Datasheet PDF : 123 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
40MX and 42MX FPGA Families
Power Dissipation
The general power consumption of MX devices is made
up of static and dynamic power and can be expressed
with the following equation:
General Power Equation
P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N
+ IOH * (VCCI – VOH) * M
where:
ICCstandby is the current flowing when no inputs or
outputs are changing.
ICCactive is the current flowing due to CMOS
switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to
VOL.
M equals the number of outputs driving TTL loads to
VOH.
Accurate values for N and M are difficult to determine
because they depend on the family type, on design
details, and on the system I/O. The power can be divided
into two components: static and active.
Static Power Component
The static power due to standby current is typically a
small component of the overall power consumption.
Standby power is calculated for commercial, worst-case
conditions. The static power dissipation by TTL loads
depends on the number of outputs driving, and on the
DC load current. For instance, a 32-bit bus sinking 4mA at
0.33V will generate 42mW with all outputs driving LOW,
and 140mW with all outputs driving HIGH. The actual
dissipation will average somewhere in between, as I/Os
switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated
by the dynamic power dissipation. Dynamic power
consumption is frequency-dependent and is a function of
the logic and the external I/O. Active power dissipation
results from charging internal chip capacitances of the
interconnect, unprogrammed antifuses, module inputs,
and module outputs, plus external capacitances due to
PC board traces and load device inputs. An additional
component of the active power dissipation is the totem
pole current in the CMOS transistor pairs. The net effect
can be associated with an equivalent capacitance that
can be combined with frequency and voltage to
represent active power dissipation.
The power dissipated by a CMOS circuit can be expressed
by the equation:
Power (µW) = CEQ * VCCA2 * F(1)
where:
CEQ =Equivalent capacitance expressed in picofarads (pF)
VCCA =Power supply in volts (V)
F =Switching frequency in megahertz (MHz)
Equivalent Capacitance
Equivalent capacitance is calculated by measuring
ICCactive at a specified frequency and voltage for each
circuit component of interest. Measurements have been
made over a range of frequencies at a fixed value of VCC.
Equivalent capacitance is frequency-independent, so the
results can be used over a wide range of operating
conditions. Equivalent capacitance values are shown
below.
CEQ Values for Actel MX FPGAs
Modules (CEQM)3.5
Input Buffers (CEQI)6.9
Output Buffers (CEQO)18.2
Routed Array Clock Buffer Loads (CEQCR)1.4
To calculate the active power dissipated from the
complete design, the switching frequency of each part of
the logic must be known. The equation below shows a
piece-wise linear summation over all components.
Power = VCCA2 * [(m x CEQM * fm)Modules +
(n * CEQI * fn)Inputs + (p * (CEQO + CL) *
fp)outputs +
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 *
fq1)routed_Clk1 +
0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 *
fq2)routed_Clk2 (2)
where:
m = Number of logic modules switching at
frequency fm
n = Number of input buffers switching at
frequency fn
p = Number of output buffers switching at
frequency fp
q1 = Number of clock loads on the first routed array
clock
q2 = Number of clock loads on the second routed
array clock
r1 = Fixed capacitance due to first routed array
clock
r2 = Fixed capacitance due to second routed array
clock
1-8
v6.0

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]