DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LT3652EDD Ver la hoja de datos (PDF) - Linear Technology

Número de pieza
componentes Descripción
Fabricante
LT3652EDD Datasheet PDF : 26 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LT3652
APPLICATIONS INFORMATION
SW
LT3652
BOOST
SENSE
BAT
3652 F02
Figure 2. Zener Diode Reduces Refresh
Voltage for BOOST Pin
VIN / BOOST Start-Up Requirement
The LT3652 operates with a VIN range of 4.95V to 32V,
however, a start-up voltage requirement exists due to
the nature of the non-synchronous step-down switcher
topology used for the charger. If there is no BOOST supply
available, the internal switch requires (VIN – VSW) ≥ 3.3V
to reliably operate. This requirement does not exist if the
BOOST supply is available and (VBOOST – VSW) > 2V.
When an LT3652 charger is not switching, the SW pin is
at the same potential as the battery, which can be as high
as VBAT(FLT). As such, for reliable start-up, the VIN supply
must be at least 3.3V above VBAT(FLT). Once switching
begins and the BOOST supply capacitor gets charged
such that (VBOOST – VSW) > 2V, the VIN requirement no
longer applies.
In low VIN applications, the BOOST supply can be powered
by an external source for start-up, eliminating the VIN
start-up requirement.
VBAT Output Decoupling
An LT3652 charger output requires bypass capacitance
connected from the BAT pin to ground (CBAT). A 10μF
ceramic capacitor is required for all applications. In systems
where the battery can be disconnected from the charger
output, additional bypass capacitance may be desired for
visual indication for a no-battery condition (see the Status
Pins section).
If it is desired to operate a system load from the LT3652
charger output when the battery is disconnected, additional
bypass capacitance is required. In this type of application,
excessive ripple and/or low amplitude oscillations can oc-
cur without additional output bulk capacitance. For these
applications, place a 100μF low ESR non-ceramic capacitor
(chip tantalum or organic semiconductor capacitors such
as Sanyo OS-CONs or POSCAPs) from BAT to ground,
in parallel with the 10μF ceramic bypass capacitor. This
additional bypass capacitance may also be required in
systems where the battery is connected to the charger
with long wires. The voltage rating of CBAT must meet or
exceed the battery float voltage.
Inductor Selection
The primary criterion for inductor value selection in an
LT3652 charger is the ripple current created in that inductor.
Once the inductance value is determined, an inductor must
also have a saturation current equal to or exceeding the
maximum peak current in the inductor. An inductor value
(L), given the desired amount of ripple current (ΔIMAX)
can be approximated using the relation:
L = (10 RSENSE / ΔIMAX) • VBAT(FLT)
[1 – (VBAT(FLT) / VIN(MAX))] (μH)
In the above relation, ΔIMAX is the normalized ripple cur-
rent, VIN(MAX) is the maximum operational voltage, and
VF is the forward voltage of the rectifying Schottky diode.
Ripple current is typically set within a range of 25% to
35% of ICHG(MAX), so an inductor value can be determined
by setting 0.25 < ΔIMAX < 0.35.
3652fb
13

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]