DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

PT4115B89E Ver la hoja de datos (PDF) - Unspecified

Número de pieza
componentes Descripción
Fabricante
PT4115B89E Datasheet PDF : 18 Pages
First Prev 11 12 13 14 15 16 17 18
PT4115
30V, 1.2A Step-down High Brightness
LED Driver with 5000:1 Dimming
Δ I is the coil peak-peak ripple current (A) {Internally
set to 0.3 x Iavg}
VIN is the supply voltage (V)
VLED is the total LED forward voltage (V)
RSW is the switch resistance (Ω ) {=0.6Ω nominal}
VD is the diode forward voltage at the required load
current (V)
Diode selection
For maximum efficiency and performance, the rectifier
(D1) should be a fast low capacitance Schottky diode
with low reverse leakage at the maximum operating
voltage and temperature.
They also provide better efficiency than silicon diodes,
due to a combination of lower forward voltage and
reduced recovery time.
It is important to select parts with a peak current rating
above the peak coil current and a continuous current
rating higher than the maximum output load current. It
is very important to consider the reverse leakage of the
diode when operating above 85°C. Excess leakage will
increase the power dissipation in the device and if close
to the load may create a thermal runaway condition.
The higher forward voltage and overshoot due to
reverse recovery time in silicon diodes will increase the
peak voltage on the SW output. If a silicon diode is
used, care should be taken to ensure that the total
voltage appearing on the SW pin including supply
ripple, does not exceed the specified maximum value.
The following web sites are useful when finding
alternatives: www.onsemi.com
Reducing output ripple
Peak to peak ripple current in the LED(s) can be
reduced, if required, by shunting a capacitor CLED
across the LED(s) as shown below:
VIN
RS
0.13Ω
LED
3W
L
68uH
D
A value of 1uF will reduce the supply ripple current by
a factor three (approx.). Proportionally lower ripple can
be achieved with higher capacitor values. Note that the
capacitor will not affect operating frequency or
efficiency, but it will increase start-up delay and reduce
the frequency of dimming, by reducing the rate of rise
of LED voltage.
By adding this capacitor the current waveform through
the LED(s) changes from a triangular ramp to a more
sinusoidal version without altering the mean current
value.
Operation at low supply voltage
The internal regulator disables the drive to the switch
until the supply has risen above the startup threshold
(VUVLO). Above this threshold, the device will start to
operate. However, with the supply voltage below the
specified minimum value, the switch duty cycle will be
high and the device power dissipation will be at a
maximum. Care should be taken to avoid operating the
device under such conditions in the application, in
order to minimize the risk of exceeding the maximum
allowed die temperature. (See next section on thermal
considerations). The drive to the switch is turned off
when the supply voltage falls below the under-voltage
threshold (VUVLO-0.5V).
This prevents the switch working with excessive 'on'
resistance under conditions where the duty cycle is
high.
Thermal considerations
When operating the device at high ambient
temperatures, or when driving maximum load current,
care must be taken to avoid exceeding the package
power dissipation limits. The graph below gives details
for power derating. This assumes the device to be
mounted on a 25mm2 PCB with 1oz copper standing in
still air.
VIN
CSN
SW
DIM
PT4115
GND
China Resources Powtech (Shanghai) Limited
PT4115_DS Rev EN_2.9
WWW.CRPOWTECH.COM
Page 13

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]