DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

TE28F400B3T110 Ver la hoja de datos (PDF) - Intel

Número de pieza
componentes Descripción
Fabricante
TE28F400B3T110 Datasheet PDF : 48 Pages
First Prev 21 22 23 24 25 26 27 28 29 30 Next Last
E
SMART 3 ADVANCED BOOT BLOCK
3.5.1
ACTIVE POWER
With CE# at a logic-low level and RP# at a logic-
high level, the device is in the active mode. Refer to
the DC Characteristic tables for ICC current values.
Active power is the largest contributor to overall
system power consumption. Minimizing the active
current could have a profound effect on system
power consumption, especially for battery-operated
devices.
3.5.2
AUTOMATIC POWER SAVINGS (APS)
Automatic Power Savings provides low-power
operation during read mode. After data is read from
the memory array and the address lines are
quiescent, APS circuitry places the device in a
mode where typical current is comparable to ICCS.,
The flash stays in this static state with outputs valid
until a new location is read.
3.5.3
STANDBY POWER
With CE# at a logic-high level (VIH) and device in
read mode, the flash memory is in standby mode,
which disables much of the device’s circuitry and
substantially reduces power consumption. Outputs
are placed in a high-impedance state independent
of the status of the OE# signal. If CE# transitions to
a logic-high level during erase or program
operations, the device will continue to perform the
operation and consume corresponding active power
until the operation is completed.
System engineers should analyze the breakdown of
standby time versus active time and quantify the
respective power consumption in each mode for
their specific application. This will provide a more
accurate measure of application-specific power and
energy requirements.
3.5.4
DEEP POWER-DOWN MODE
The deep power-down mode is activated when RP#
= VIL (GND ± 0.2 V). During read modes, RP#
going low de-selects the memory and places the
outputs in a high impedance state. Recovery from
deep power-down requires a minimum time of tPHQV
(see AC Characteristics—Read Operations).
During program or erase modes, RP# transitioning
low will abort the in-progress operation. The
memory contents of the address being programmed
PRELIMINARY
or the block being erased are no longer valid as the
data integrity has been compromised by the abort.
During deep power-down, all internal circuits are
switched to a low power savings mode (RP#
transitioning to VIL or turning off power to the device
clears the status register).
3.6 Power-Up/Down Operation
The device is protected against accidental block
erasure or programming during power transitions.
Power supply sequencing is not required, since the
device is indifferent as to which power supply, VPP
or VCC, powers-up first.
3.6.1
RP# CONNECTED TO SYSTEM
RESET
The use of RP# during system reset is important
with automated program/erase devices since the
system expects to read from the flash memory
when it comes out of reset. If a CPU reset occurs
without a flash memory reset, proper CPU
initialization will not occur because the flash
memory may be providing status information
instead of array data. Intel recommends connecting
RP# to the system CPU RESET# signal to allow
proper CPU/flash initialization following system
reset.
System designers must guard against spurious
writes when VCC voltages are above VLKO. Since
both WE# and CE# must be low for a command
write, driving either signal to VIH will inhibit writes to
the device. The CUI architecture provides additional
protection since alteration of memory contents can
only occur after successful completion of the two-
step command sequences. The device is also
disabled until RP# is brought to VIH, regardless of
the state of its control inputs. By holding the device
in reset (RP# connected to system PowerGood)
during power-up/down, invalid bus conditions during
power-up can be masked, providing yet another
level of memory protection.
3.6.2
VCC, VPP AND RP# TRANSITIONS
The CUI latches commands as issued by system
software and is not altered by VPP or CE#
transitions or WSM actions. Its default state upon
power-up, after exit from reset mode or after VCC
transitions above VLKO (Lockout voltage), is read
array mode.
21

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]