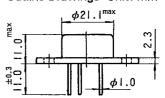
T-58-11-31

SI-8000B Series

Switching Voltage Regulator

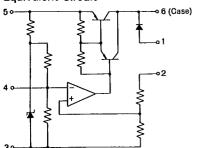

Features:

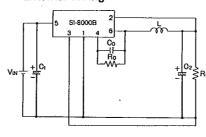
Wide DC input voltage (~55V) High power conversion efficiency (91% for SI-8243B) Precise setting voltage (1% for SI-8053B) Output power control by external components High-reliability passivated power chip and flip-chip control circuit

Absolute Maximum Ratings (Ta=25°C)

Type No. Description	SI-8053B	SI-8093B	SI-8123B	SI-8153B	SI-8243B		
DC Input Voltage (V)	60						
Output current (A)	3.5						
Power Dissipation (W)	28 (Tc=25°C) 2.5 (Without heat sink)						
Thermal Resistance (°C/W)	3.5						
Junction Temperature (°C)	-30~+125						
Operational Temperature (°C)	-20~+80						
Storage Temperature (°C)	-30~+125						

Outline Drawings Unit: mm




Electrical Characteristics (Ta=25°C)

	Type No.	S	I-8053	В	S	I-8093	В	S	-8123	В	S	-8153	В	S	-8243	В
Description		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX
DC Input Voltag	ge (V)	15		55	18		55	20		55	20		55	30		55
	Conditions		ЗА			ЗА			ЗА			ЗА			ЗА	·
Output Voltage	(V)	4.95	5.05	5.15	8.85	9.05	9.25	11.85	12.05	12.25	14.85	15.05	15.25	23.85	24.04	24.28
	Conditions	3	30V,2A	4	;	30V,2A	A	3	30V,2A	4	30V,2A		4	40V,2A		
Output Current	(A)			3			3			3			3			3
Efficiency	(%)		74			83			86			89			91	
	Conditions	30V,2A 30V,2A		30V,2A			30V,2A		40V,2A							
Line Regulation	(mV)		30			80			90			100	_		100	
	Input Volt.	2	5~35	V	2	5~35	V	2	5~35	V	2	5~35	V	3	5~45	V
	Output Curr.		2A			2A			2A			2A			2A	
Load Regulation	n (mV)		15			15			15			15			15	
	Input Volt.		30V			30V			30V			30V			40V	
Output Curr.		0.	5~3.0	DA.	0.	5~3.0	AC	0.	5~3.0	DA AC	0.	5~3.0	OA	0.	5~3.0	OA
Temperature Co of Output Volta			±1			±2			±2	-		±2			±3	

Equivalent Circuit

External Wiring

Co, Ro: External capacitor and resistor for self oscilla-

: Protection capacitor against parasitic oscillation : Capacitor and inductor for output filter

Derating

Allowable Power Dissipation Pc (W)

150×150×2 (3.3°C W

100×100×2(5.2°C

50×50×2 (12°C

No Fir

SI-8000B series

T-58-11-37 Switching Voltage Regulator

Note for Wiring

The wiring between input capacitor C1 and input terminal 5 shall be as short as possible.

AC filter capacitor can be used as the substitute of input capacitor if the wiring between filter capacitor and input terminal is short like a few cm.

Thick solid line of "External Wiring" indicates that good conductor (e.g., short and thick cables or PCB conductors) shall be used.

The wiring between pin 4 and Co, Ro shall be as short as possible.

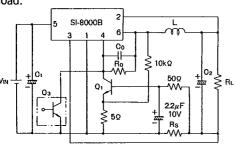
Selection of output filter capacitor C2 and choke coil L

Ripple current Irip through the capacitor C2 is given by:

$$Irip = \frac{(V_{IN} - V_O) \cdot V_O}{1 \cdot V_{IN} \cdot f}$$

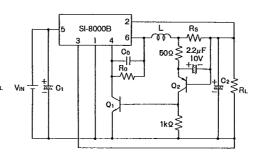
where f = Oscillation frequency

Inductance L shall be selected to meet


LLE D

lrip/2 = lo min.

Design consideration shall be made on the heat dissipation from the filtering troidal inductance due to the ripple current and on the ripple current rating of output capacitor.


Over Current Protection Circuit (1)

The circuit diagram below is an external current limitter which has a current detecting resistor inserted between minus output and load.

Over Current Protection Circuit (2)

The circuit diagram below is an external current limitter which has a current detecting resistor inserted between plus output and load.

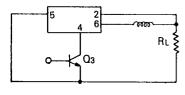
Selection of Overcurrent Sensing Resistor Rs Short-circuit protection starting current Is1 shall be determined so that Rs•Is≈0.5.

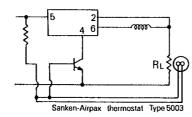
Appropriate power resistor Rs shall be used to manage the power Rs•ls2.

Selection of resistor Ro and capacitor Co

SI-8000B series are self-exciting switching regulators and the switching frequency f is changed by the fluctuation of $V_{\rm IN}$ and I_0 . $S\bar{o}$, R_0 is to be selected around a few hundred $k\Omega$ so that the switching frequency fmay be about 20kHz. The switching frequency f will be raised by increasing Ro and reduced by decreasing Ro.

Considering the switching frequency f is changed by the fluctuation of $V_{
m IN}$ and $I_{
m O}$, select suitable $R_{
m O}$ which keeps the switching frequency f to be 20kHz at the lowest.


Roshall be also changed in accordance with L and C2.


Then attach Co of 100 pF.

If the rising characteristics of switching waveform is not desirable, replace it by a capacitor of 200 pF.

OF-OFF control by external signal

The circuit diagram below is an The circuit below is a thermal shut external on-off control of output down circuit against overload. voltage.

Ambient Temperature Ta (°C)

Without mica With silicone grease Heatsink: Aluminium Unit: mm

Calculation of power dissipation Pc Power dissipation Pc is given by the following

$$Pc = (\frac{100}{7} - 1) Po$$

where: η' : Efficiency $\left(\frac{P_0}{P_{IN}} \times 100\right)$ Po: Output power ($V_0 \times I_0$)

$$\eta' = \eta + \alpha (V_{IN} - V'_{IN})$$

where: η': Efficiency

V'ın: Average value of maximum operation input voltage

 V_{IN}, α :

	Vin	α
SI-8053B	30V	0.3
SI-8093B SI-8123B SI-8153B	30V	0.2
SI-8243B	40V	0.2

The efficiency η is measured at switching frequency f = 20 kHz. When f increases, the effiency will be decreased.

Specifications of rectifier diodes, transistors and choke

The following part numbers are for your reference.

Products	Part numbers	Makers
Rectifier diodes	RM4Z (Descrete diode)	Sanken
Rectifier diodes	CTM-21S (Centertap.	Sanken
	Cathode common)	
Rectifier diodes	CTM-21R (Centertap.	Sanken
	Anode common)	
Rectifier diodes	RB402 (Bridge)	Sanken
Transistor Q1,Q3	2SC945	NEC
	MPS8098	MOTA
Transistor Q2	2SA733	NEC
	MPS8598	MOTA
Thermostat Th1	5003-F-105°CM	Sanken
Choke coils	SN-10-500 (110μH,3A)	TOHOKU
	SF-T10-50 (110µH,3A)	TDK